Year 2 Monitoring Report

Trout Cove Stream Restoration

March 2008 EEP Project No. 388

Prepared for

NCEEP, 1652 Mail Service Center, Raleigh, NC 27699-1652

Table of Contents

I.	Ex	xecutive Summary / Project Abstract	. 1
II.		Project Background	. 2
A		Location and Setting	. 2
В		Structure and Objectives	. 2
C		Project History and Background	. 3
D		Monitoring Plan View	. 4
III.		Project Condition and Monitoring Results	. 5
A	•	Vegetation Assessment	. 5
	1.	Soil Data	. 6
	2.	Problem Areas Plan View (Vegetation)	. 6
	3.	Stem Counts	. 6
	4.	Vegetation Plot Photos	. 8
В		Stream Assessment	. 8
	1.	Problem Areas Plan View (Stream)	. 8
	2.	Problem Areas Table Summary	. 8
	4.	Fixed Photo Station Photos	. 9
	5.	Stability Assessment	. 9
IV.		Methodology Section	13

I. Executive Summary / Project Abstract

This report summarizes the monitoring efforts for Year 2 (2007) on the Trout Cove Stream Restoration in Clay County, NC.

Monitoring of the vegetated buffer was performed during the growing season of 2007, by Soil & Environmental Consultants, PA (S&EC). Stem counts were performed within the established vegetation monitoring plots, resulting in a live stem density of approximately 590 stems per acre indicating vegetative success. No vegetative problem areas were observed. No significant infestations of exotic invasives or bare areas of soil that should be addressed.

The stream channel was surveyed, and a visual stability assessment was performed. While several problem areas along the restored channel were observed, the overall channel is deemed stable and successful. Field observations indicate that at least 98% of all stream features, including riffles, pools, meanders, and channel bed and banks were stable. Although select in-channel rock structures were identified to have some minor problems, 95% of site structures were deemed stable. In 2008, Year 3 Monitoring will commence.

II. Project Background

The background information for this report was collected from previous monitoring data submitted to the North Carolina Ecosystem Enhancement Program (NCEEP) by the Biological and Agricultural Engineering (BAE) Department at North Carolina State University (NCSU).

A. Location and Setting

The Trout Cove Stream Restoration Project consists of an approximately 6.32 acre property in southwestern Clay County, NC. The site is located south of US Highway 64 and east of old US Highway 64 approximately 2 miles north of the Georgia state line. The site is located along Trout Cove Road just north of the community of Ogden, NC. This area is shown in detail in the attached vicinity map (Figure 1). To visit the site from I-40, take 19/74 eastbound. Turn left on US 64 in Murphy, NC. Turn left onto Old US 64 and continue past Brasstown, NC. Turn left onto Trout Cove Road and a right onto McCray Road. The site will be located to your right.

B. Structure and Objectives

The restoration site consists of approximately 2,683 linear feet of stream restoration and approximately 6.32 acres of riparian buffer restoration. Explicit project objectives and restoration quantities were not included in the project history provided by NCEEP. Restoration units are estimates based on site data collected. The structure and objectives are detailed in Tables I and II.

	roject Structure Table estoration Site (EEP Project # 388)
Segment/Reach ID	Linear Feet or Acreage
Reach 1	1,876 linear feet
Reach 2	807 linear feet
Buffer Restoration	6.32 ac

Table II: Project Objectives Table Trout Cove Stream Restoration Site (EEP Project # 388)											
Segment/Reach ID	Objectives	Linear Feet or Acreage	Comment								
Reach 1	Restoration	1,876 linear feet									
Reach 2	Restoration/Enhancement	807 linear feet									
Buffer	Restoration	6.32 Acres									

C. Project History and Background

We have assumed that 2006 served as Monitoring Year 1, therefore 2007 will serve as Monitoring Year 2 of the required 5 years of monitoring. Additional details, to include the project designer, original design parameters, and the history of the project, have not been provided as of the date of this report. Details regarding the timeline of the project are included as Table III.

Table III: Project Activity and Reporting History Trout Cove Stream Restoration Site (EEP Project #388)											
Activity or Report	Calendar Year of Completion or Planned Completion	Actual Completion Date									
Restoration Plan	Unknown	Unknown									
Site Planted	Unknown	Unknown									
Initial-Year 1 monitoring	2006	Dec-06									
Year 1 Vegetation Monitoring	2006	Aug-06									
Year 2 Monitoring	2007	Nov-07									
Year 2 Vegetation Monitoring	2007	Jun-07									
Year 3 Monitoring	2008										
Year 3 Vegetation Monitoring	2008										
Year 4 Monitoring	2009										
Year 4 Vegetation Monitoring	2009										
Year 5 Monitoring	2010										
Year 5 Vegetation Monitoring	2010										

Based on data provided by NCEEP, it is unknown at this time which firms designed and constructed the Trout Cove project. Monitoring activities for Year 1 were performed and reported by S&EC. Additional information regarding known contractors is shown in Table IV.

	able IV: Project Contact Table tream Restoration Site (EEP Project #388)
Designer	Unknown
Monitoring Performers	Soil & Environmental Consultants, PA 11010 Raven Ridge Road Raleigh, NC 26714
Stream Monitoring POC Vegetation Monitoring POC	Jessica Regan, S&EC

The project is located within Clay County, which is located within the Blue Ridge Belt of the Mountains of North Carolina. The site is located within a rural area. Additional information regarding the stream is included as Table V.

Table V: Project Background Table Trout Cove Stream Restoration Site (EEP Project #388	3)
Project County	Clay
Drainage Area	0.453 sq. mi.
Drainage impervious cover estimate (%)	5%
Stream Order	1st, 2nd
Physiographic Region	Mountain
Ecoregion	Blue Ridge
Rosgen Classification of As-Built	*
Dominant Soil Types	RhA LoC, FrA
USGS HUC for Project and Reference	06020002
NCDWQ Sub-basin for Project and Reference	04-05-01
NCDWQ classification for Project and Reference	WS-IV
Any portion of any project segment 303d listed?	No
Any portion of any project segment upstream of a 303d listed segment?	No
Reasons for 303d listing or stressor	No
% of project easement fenced	100%

^{*}Unknown - As-built data not provided

D. Monitoring Plan View

Original site survey data was provided to S&EC by NCEEP including the location of a series of monitoring devices previously installed onsite. The survey included a total of 2,683 linear feet of longitudinal profile and five (5) cross-sections. During our

initial site visit on January 12, 2006, all cross-sections were located. These same cross-sections were surveyed in 2006 and again in 2007.

Using provided survey data from 2005, we located five (5) previously established vegetation monitoring plots. A single corner of each of these plots was marked with iron pin with a plastic yellow cap. Four permanent corners had not been set. During our August 21, 2006 site visit S&EC established permanent corners with 1.5-inch PVC. The permanent corners were located with the survey data collected in November 2006. In Year 2 (2007) NCEEP requested that two (2) additional vegetation plots be installed on the tributary to the main channel. Each surveyed stream cross-section and vegetation monitoring plot is also a designated photo point that is photographed annually. The locations of all monitoring devices are shown on Sheets 1 through 4 (Overall Site Plan and Monitoring Plan View).

III. Project Condition and Monitoring Results

A. Vegetation Assessment

The Trout Cove stream restoration site vegetation is dense and healthy throughout the site with a variety of herbaceous and woody species. The site contains a lush herbaceous layer particularly in the wetland areas and pond edges. Herbaceous species observed included large amounts of goldenrod (*Solidago* sp.), boneset (*Eupatorium perfoliatum*), soft rush (*Juncus effusus*), sedges (*Carex* sp.), ironweed (*Vernonia noveboracensis*), great blue lobelia (*Lobelia siphilitica*), cutgrass (*Leersia oryzoides*) and jewelweed (*Impatiens capensis*).

Larger trees (5-20 feet tall) can be seen throughout the buffer mostly consisting of black willow (*Salix nigra*), river birch (*Betula nigra*) and sycamore (*Platanus occidentalis*). Saplings and smaller individuals of oak, pine, maple, tulip poplar (*Liriodendron tulipifera*) and sweetgum (*Liquidambar styraciflua*) were observed. Shrubs observed in the buffer included pepperbush (*Clethra acuminata*), silky dogwood (*Cornus* amomum), tag alder (*Alnus serrulata*), buttonbush (*Cephalanthus occidentalis*) and possumhaw (*Viburnum nudum*).

The buffer area also contains a large amount of blackberry (*Rubus* sp.) which is extremely dense in some areas. The stream bank vegetation is also extremely dense and primarily made up of tag alder (*Alnus serrulata*) and silky dogwood (*Cornus amomum*).

Exotic, invasive plant species do not appear to be a problem on the Trout Cove restoration site. Japanese honeysuckle (*Lonicera japonica*) was observed but it was not dense or widespread.

Seven (7) vegetation monitoring plots were established onsite as previously described. Five (5) plots are standard 10m x 10m plots and two (2) are non-standard 5m x 20m plots. Two (2) new plots were established on the tributary in 2007 by S&EC.

The vegetative success criteria for the site require a minimum of 320 live stems per acre for the first three (3) years of monitoring. At the end of Year 4, a density of 290 stems per acre is required. At the end of the 5-year monitoring period, a live stem density of 260 stems per acre is required.

1. Soil Data

Table VI: Preliminary Soil Data Trout Cove Stream Restoration Site (EEP Project # 388)												
Series	Max Depth (in.)	% Clay on Surface	K	Т	OM %							
Reddies Loam, 0-3% slopes (RhA)	80	5-18	0.20	4	3-8							
Lonon Loam, 8-15% slopes (LoC)	80	7-20	0.24	5	0-2							
French fine sandy loam, 0-3% slopes (FrA)	45	5-20	0.24	4	0-4							

2. Problem Areas Plan View (vegetation)

No vegetation problem areas were observed during visual inspection of the restoration site.

3. Stem Counts

On June 12, 2007, S&EC conducted vegetation counts within each vegetation plot. The results of this survey are shown below in Table VIII. The taxonomic standard used for the counts is "Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas" by Alan S. Weakley. Vegetation counts were completed according to CVS-EEP Protocol for Recording Vegetation Version 4.0.

The following tree and shrub species were observed within the vegetation monitoring plots in previous monitoring years according to stem count data collected by S&EC: *Acer Rubrum* (Red Maple), *Alnus serrulata* (Tag Alder), *Betula nigra* (River Birch), *Cephalanthus occidentalis* (Buttonbush), *Cornus amomum* (Silky Dogwood), *Liquidambar styraciflua* (Sweetgum), *Platanus occidentalis* (Sycamore), *Salix nigra* (Black Willow) and *Viburnum nudum* (Possumhaw).

Trout Co	ove Stream I Live S	Restoration tem Counts				ject# 388)		
			•	Plot #				
Species			Reach 1	_		Trib	utary	
	1	2	3	4	5	6	7	Year 2 Totals
<i>Acer rubrum</i> Red Maple		1		1	1	2		5
Alnus serrulata* Tag Alder	5	3	1	8	13			30
<i>Betula nigra</i> River Birch					1	4	5	10
Cephalanthus occidentalis Buttonbush			1	2	2	1		6
<i>Clethra alnifolia</i> Pepperbush	2			1				3
Cornus amomum* Silky Dogwood	1	6	2	8	10	2		29
Liriodendron tulipifera Tulip poplar				1	1			2
Platanus occidentalis Sycamore	1	1					1	3
<i>Salix nigra</i> Black Willow		6		3	1	2	2	14
Year 2 (2007) Plot Totals	9	17	4	24	29	11	8	102
Year 1 (2006) Plot Totals	6	18	4	22	28	N/A	N/A	78
Previous Plot Totals	5	4	5	22	14	N/A	N/A	50
							_	_
Plot Live Stem Density	364	689	162	972	1175	445	324	
Overall Site Stem Density								590

^{*} Numerous volunteers observed - not included in the stem counts shown

The average number of stems per sample plot is approximately 14 stems. Based on this stem count, the 2007 (Year 2) vegetation monitoring of the site revealed an average live stem density of 590 stems per acre.

As shown in Table VIII, one plot (Plot 3) has shown a stem density of less than the desired 320 stems per acre. However, while not quantified in the above table, each plot has shown a large number of volunteers in addition to the original planted stems including additional species such as Red Oak and

Pepperbush. If these new plants are taken into consideration, stem density would likely be much higher than 320 stems per acre in that plot.

4. Vegetation Plot Photos

Photos taken during the June 12, 2007 Vegetation Sampling event are included as Appendix A.

B. Stream Assessment

1. Problem Areas Plan View (Stream)

An assessment of channel stability was performed on June 12, 2007, by S&EC. Areas of concern that were observed and documented included localized bank scour, and stressed or failing structures. These problem areas are shown on Sheets 5 through 7 (Problem Area Plan View) and described in Table IX.

2. Problem Areas Table Summary

		IX: Stream Problem Areas n Restoration Site (EEP Project # 38	88)			
Feature Issues	Number	Suspected Cause	Photo number			
	1 (1+40 – 1+55)	Erosion/Undercutting				
	3 (3+60 – 3+70)	Erosion/Undercutting				
Structure	4 (3+95 – 4+05)	Erosion/Undercutting	1-2			
(Rock Shift)	5 (4+60 – 4+70)	Erosion/Undercutting	1-2			
	6 (23+05 – 23+15)	Erosion/Undercutting				
	7 (28+30 – 28+40)	Erosion/Undercutting				
Structure (Rock Piping)	2 (2+90 – 3+00)	Erosion	3			
	1 (2+50 – 2+60)	Erosion/Undercutting Banks				
	2 (4+10 – 4+18)	Erosion/Undercutting Banks				
	3 (6+20 – 6+27)	Erosion/Undercutting Banks				
Bank Scour	4 (22+55 – 22+95)	Erosion/Undercutting Banks	4-5			
	5 (24+96 – 25+00)	Erosion/Undercutting Banks				
	6 (26+00 – 26+05)	Erosion/Undercutting Banks				
	7 (27+40 – 27+95)	Erosion/Undercutting Banks				

3. Numbered Issues Photo Section

Representative photos of each category of stream problem area were taken and are shown in Appendix B.

4. Fixed Photo Station Photos

Photos from established photo stations (at each cross-section) were collected during the stream survey (November 2007). Cross-section photos taken during the Monitoring Year 1 survey (November 2006) are included for comparison. These photos are included in Appendix B.

5. Stability assessment

A visual qualitative assessment was performed to inspect channel facets, meanders, bed, banks, and installed structures. This visual assessment was confirmed and enhanced with a quantitative assessment of the physical stream survey. The goal of this assessment is to provide a percentage of the features listed in Table X that are in a state of stability. Table X was compiled from the data in Table B1 in Appendix B of this report.

Table X: Categorical Stream Feature Visual Stability Assessment Trout Cove Stream Restoration Site (EEP # 388)												
Feature	MY-1 2006	MY-2 2007	MY-3 2008	MY-4 2009	MY-5 2010							
A. Riffles	100%	99%										
B. Pools	100%	100%										
C. Thalweg	100%	100%										
D. Meanders	100%	100%										
E. Bed General	99%	98%										
F. Channel General	N/A	N/A										
G. Banks	99.5%	98.6%										
H. Vanes/ J Hooks, etc.	96%	95%										
I. Wads and Boulders	N/A	N/A										

6. Quantitative Morphology

The following tables (Table XI and Table XII) summarize the quantitative data collected from the cross-sectional and longitudinal stream survey. Collected data was analyzed and summarized, and then compared with baseline data available for this project. The Quantitative Morphology Tables illustrate the degree of departure, if any, of the current channel from the baseline data.

2005 stream survey data received from NCEEP, was collected and provided by NCSU. Two reaches of the stream channel originally surveyed in 2005 were again surveyed using assumed vertical and horizontal coordinates.

We understand that a crest gauge has been installed on the site; however at the time of this submittal, no data from that gauge was available to S&EC. A review of available on-line USGS gauge sites was performed to determine if a suitable surrogate gauge was present in the area. No nearby gauge was identified. The closest USGS gauge to the site was on Brasstown Creek (near Brasstown, NC, Gauge Identification Number 03548330) which is approximately 3.3 miles from the project site. Based on this large distance, significant disparity in watershed sizes, and topographic variation, it is unlikely that a conclusive determination regarding the number of bankfull events experienced on the restoration site could be made.

Based on observed site conditions, to include wrack lines, staining of vegetation, displaced/flattened vegetation, and observable sediment deposition, it appears that one or more overbank events have occurred during this monitoring year. Similar observations were made during 2006 by S&EC indicating that one or more bankfull events have occurred onsite in each of the last two monitoring years.

Table XI. Baseline Morphology and Hydraulic Summary TROUT COVE STREAM RESTORATION SITE (EEP Project #388) Parameter Pre-Evisting Condition Project Reference Stream Design

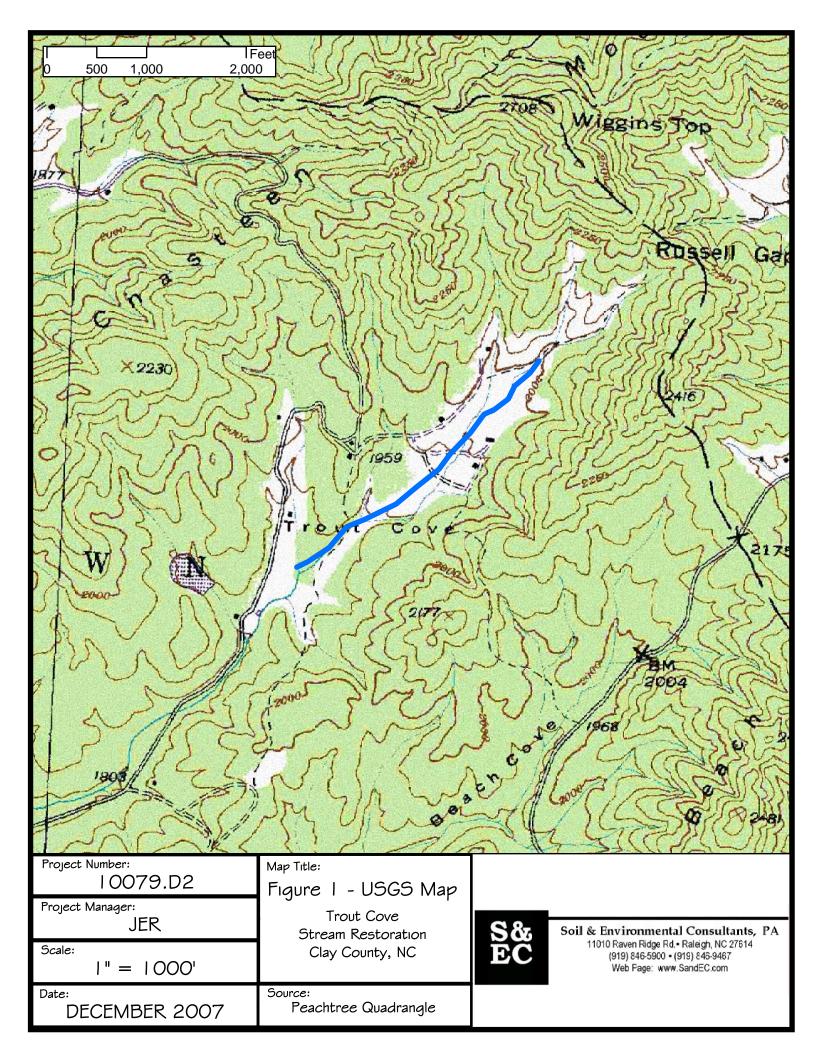
Parameter	Pre-E	Existing Co	ndition	Project Reference Stream				Design		As-built			
Dimension	Min	Max	Avg.	Min	Max	Avg.	Min	Max	Avg.	Min	Max	Avg.	
BF Width (ft) Floodprone Width	*	*	*	*	*	*	*	*	*	*	*	*	
(ft)									·				
BF Cross	*	*	*	*	*	*	*	*	*	*	*	*	
Sectional Area (ft ²)													
BF Mean Depth	*	*	*	*	*	*	*	*	*	*	*	*	
(ft)													
BF Max Depth (ft)	*	*	*	*	*	*	*	*	*	*	*	*	
Width/Depth	*	*	*	*	*	*	*	*	*	*	*	*	
Ratio Entrenchment	*	*	*	妆	妆	*	*	*	*	*	*	*	
Ratio	*			*		*		*	*	*	*	*	
Bank Height	*	*	*	*	*	*	*	*	*	*	*	*	
Ratio Wetted	*	*	*	*	*	*	*	*	*	*	*	*	
Perimeter(ft)													
Hydraulic radius	*	*	*	*	*	*	*	*	*	*	*	*	
(ft) Pattern													
Channel	*	*	*	*	*	*	*	*	*	*	*	*	
Beltwidth (ft)													
Radius of Curvature (ft)	*	*	*	*	*	*	*	*	*	*	*	*	
Meander	*	*	*	*	*	*	*	*	*	*	*	*	
Wavelength (ft)	*	*	*	*	*	*	*	*	*	*	*	*	
Meander Width ratio	*	~	*	*	*	*	~	Ψ.	*	*	*	*	
Profile													
Riffle length (ft)	*	*	*	*	*	*	*	*	*	*	*	*	
Riffle slope (ft/ft)	*	*	*	*	*	*	*	*	*	*	*	*	
Pool length (ft)	*	*	*	*	*	*	*	*	*	*	*	*	
Pool spacing (ft)	*	*	*	*	*	*	*	*	*	*	*	*	
Substrate													
d50 (mm)	*	*	*	*	*	*	*	*	*	*	*	*	
d84 (mm)	*	*	*	*	*	*	*	*	*	*	*	*	
Additional Reach													
Parameters													
Valley Length (ft)		*			*			*			*		
Channel Length (ft)		*			*			*			*		
Sinuosity		*			*			*			*		
Water Surface		*			*			*			*		
Slope (ft/ft)		٠			*			4			*		
BF slope (ft/ft)		*			*			*			*		
Rosgen Classification		*			*			*			*		
*Habitat Index		*			*			*			*		
*Macrobenthos		*			*			*			*		

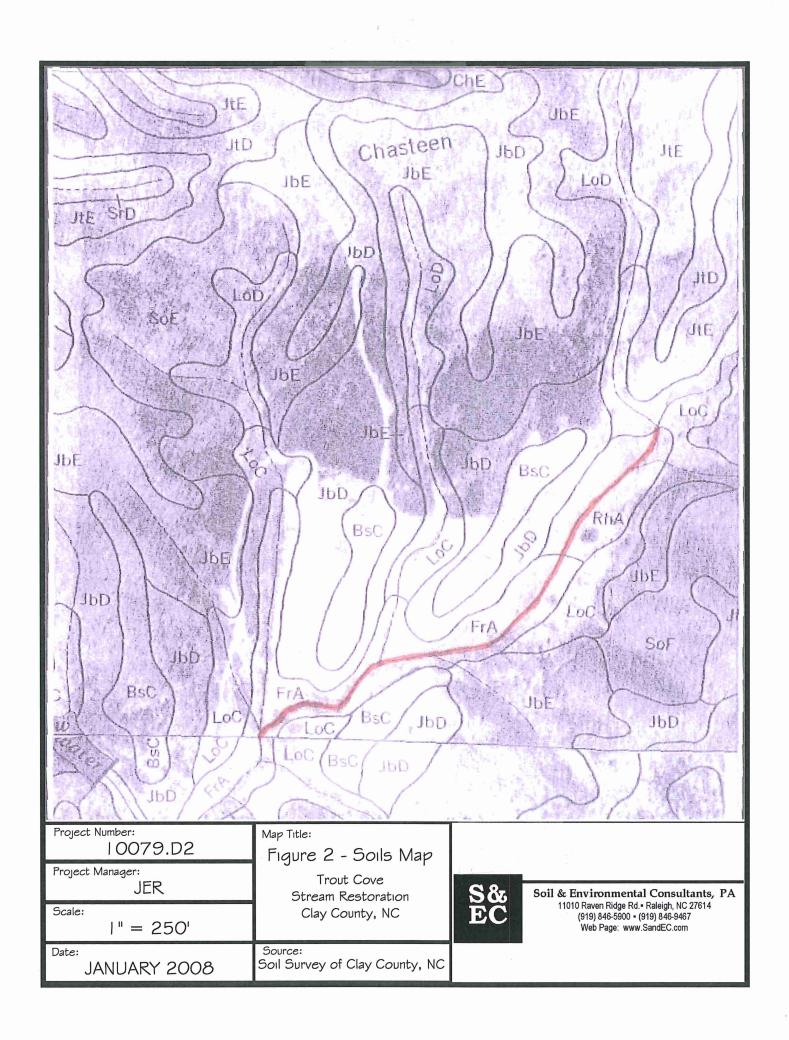
^{*} Items denoted with an asterisk have not been provided due to: lack of data provided for previous monitoring years, incorrect data provided for previous monitoring years, or these are items outside the scope of this year's monitoring effort.

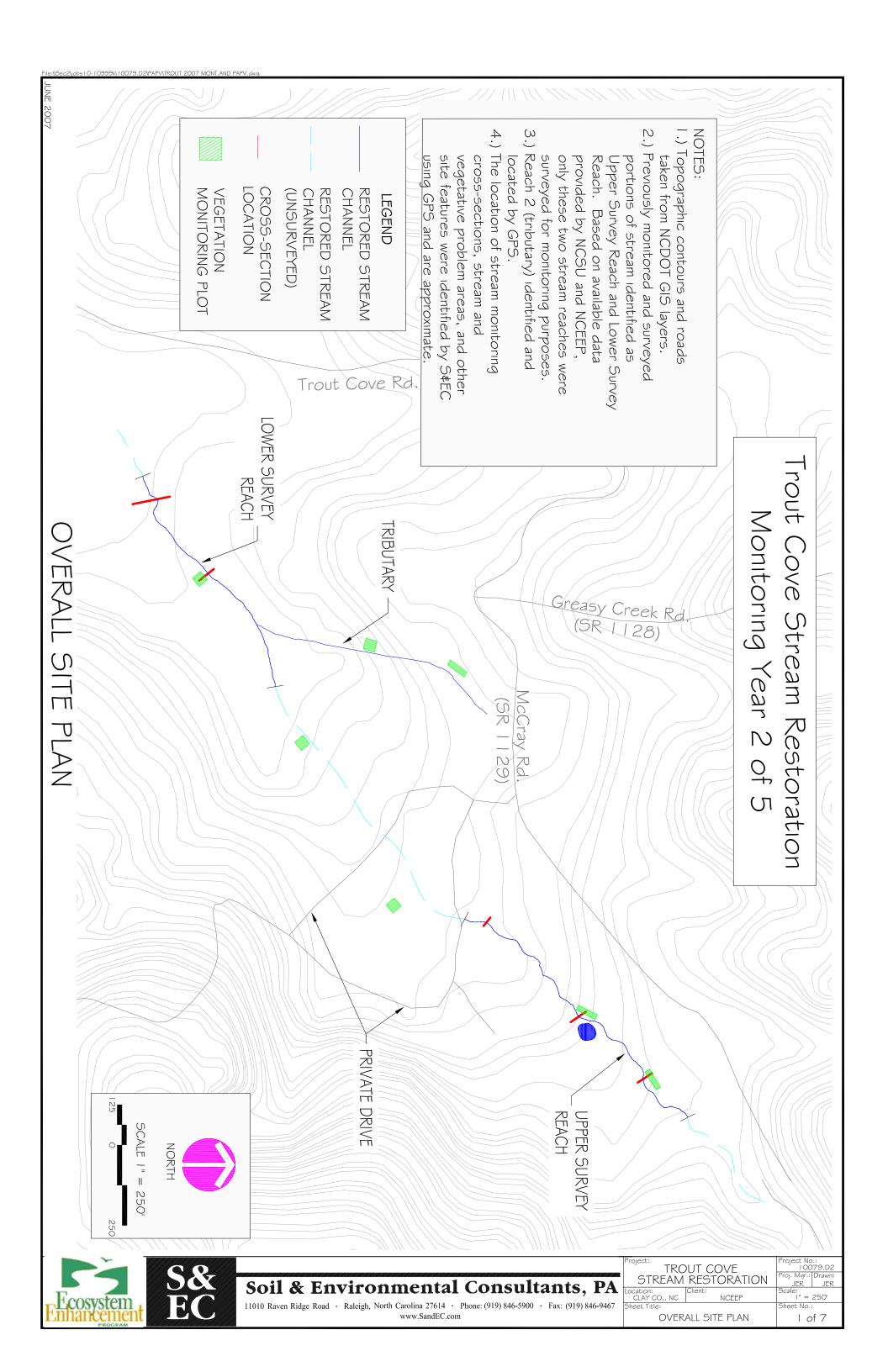
Exhibit Table XII. Morphology and Hydraulic Monitoring Summary TROUT COVE STREAM RESTORATION SITE (EEP Project #388)

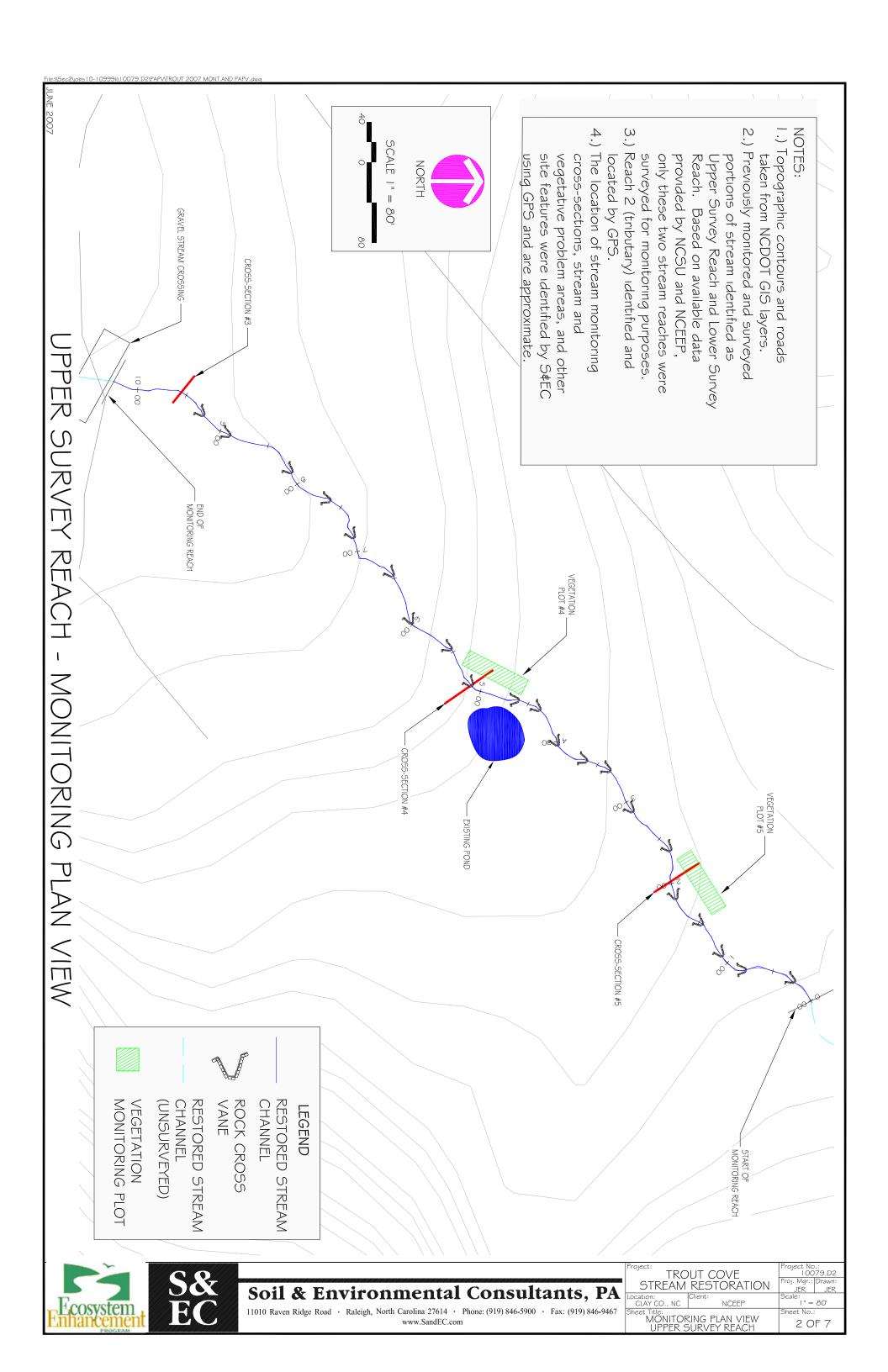
Parameter	LOWER REACH							UPPER REACH							
	X	S1 - POOL	. 1	XS2 - RIFFLE 2			X	XS3 - POOL 2		XS4 - RIFFLE 2			XS5 - POOL 3		
Dimension	AS BUILT	MY1	MY2	AS BUILT	MY1	MY2	AS BUILT	MY1	MY2	AS BUILT	MY1	MY2	AS BUILT	MY1	MY2
	2005	2006	2007	2005	2006	2007	2005	2006	2007	2005	2006	2007	2005	2006	2007
BF Width (ft)	*	15.69	10.96	*	9.6	6.79	*	18.63	15.52	*	22.33	21.64	*	12.47	11.13
Floodprone Width (ft)	*	54.22	32.41	*	50	28.13	*	50	32.93	*	50	48.58	*	50	39.88
BF Cross Sectional Area (ft²)		11.21	17.63	*	10.02	8.78	*	10.1	7.16	*	10.3	11.35	*	10.07	8.85
BF Mean Depth (ft)	*	0.71	1.61	*	1.04	1.29	*	0.54	0.46	*	0.46	0.52	*	0.81	0.8
BF Max Depth (ft)	*	2.35	2.22	*	2.3	2.19	*	1.48	1.23	*	1.22	1.43	*	1.81	1.8
Width/Depth Ratio	*	22.1	6.81	*	9.23	5.26	*	34.5	33.74	*	48.54	41.62	*	15.4	13.91
Entrenchment Ratio	*	3.46	2.96	*	5.21	4.15	*	2.68	2.12	*	2.24	2.25	*	4.01	3.58
Bank Height Ratio	*	1.04	1.08	*	1.20	1.26	*	1.54	1.59	*	1.06	1.08	*	1.49	1.52
Wetted Perimeter(ft)	*	16.93	12.77	*	10.88	8.64	*	19.35	15.89	*	22.73	22.07	*	13.57	12.19
Hydraulic radius (ft)	*	0.66	1.38	*	0.92	1.02	*	0.52	0.45	*	0.45	0.51	*	0.74	0.73
Substrate															
d50 (mm)	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
d84 (mm)	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

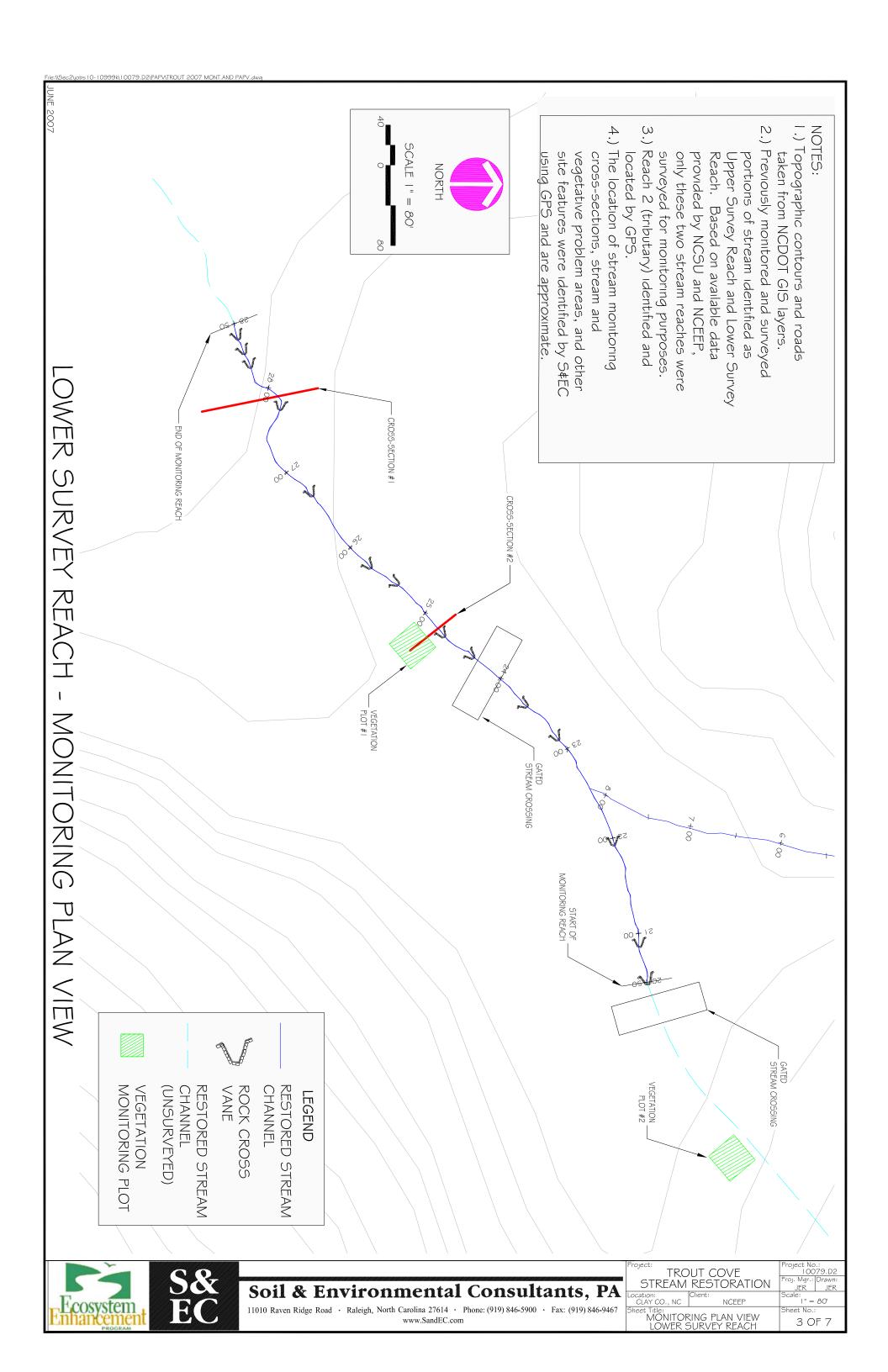
Parameter	A	s-built (200	05)	1	MY-1 (2006)			MY-2 (2007)			
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med		
Channel Beltwidth (ft)	*	*	*	24.28	84.5	45.88	22.06	80.88	47.35		
Radius of Curvature (ft)	*	*	*	19.03	38.59	28.26	20.95	35.37	28.49		
Meander Wavelength (ft)	*	*	*	87.75	135.06	103.88	57	124.64	90.36		
Meander Width ratio	*	*	*	3.92969	6.04837	4.65204	3.2489	11.9116	6.97349		
Profile											
Riffle length (ft)	*	*	*	*	*	*	4.69	7.98	5.98		
Riffle slope (ft/ft)	*	*	*	0.08714	0.07284	0.04092	0.0239	0.0966	0.0658		
Pool length (ft)	*	*	*	4.34	30.09	14.39	4.75	22.33	11.98		
Pool spacing (ft)	*	*	*	11.29	105.54	52.21	29.94	87.91	57.62		
Additional Reach Parameters											
Valley Length (ft)		*		1746			1746				
Channel Length (ft)		*		1876			1876				
Sinuosity		*		1.07			1.07				
Water Surface Slope (ft/ft)	*				0.04092			0.0409			
BF slope (ft/ft)	*			0.04092			0.0409				
Rosgen Classification	*			C4b			C4b				
Habitat Index*		*		*			*				
Macrobenthos*	*			*			*				

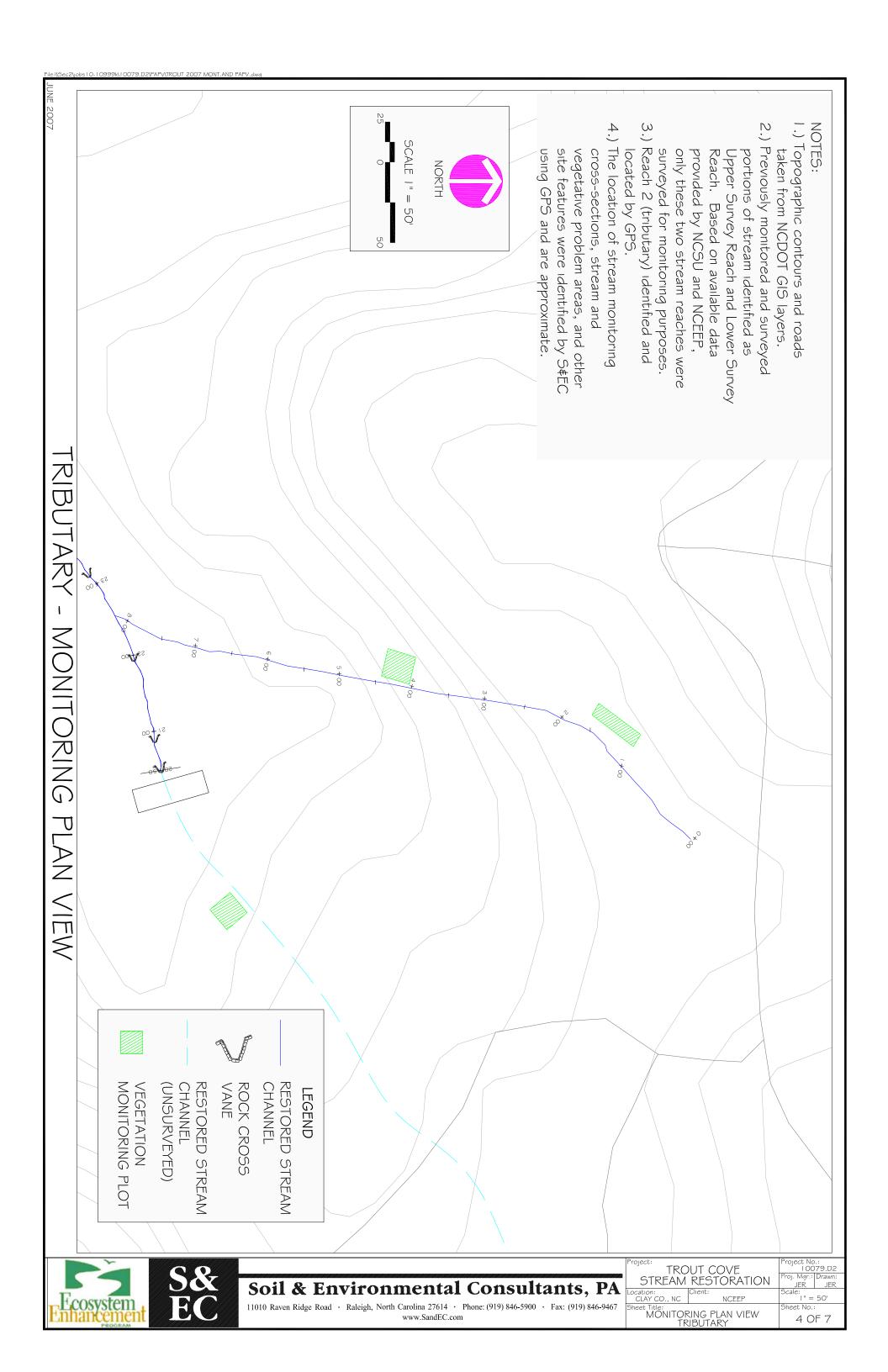

IV. Methodology Section

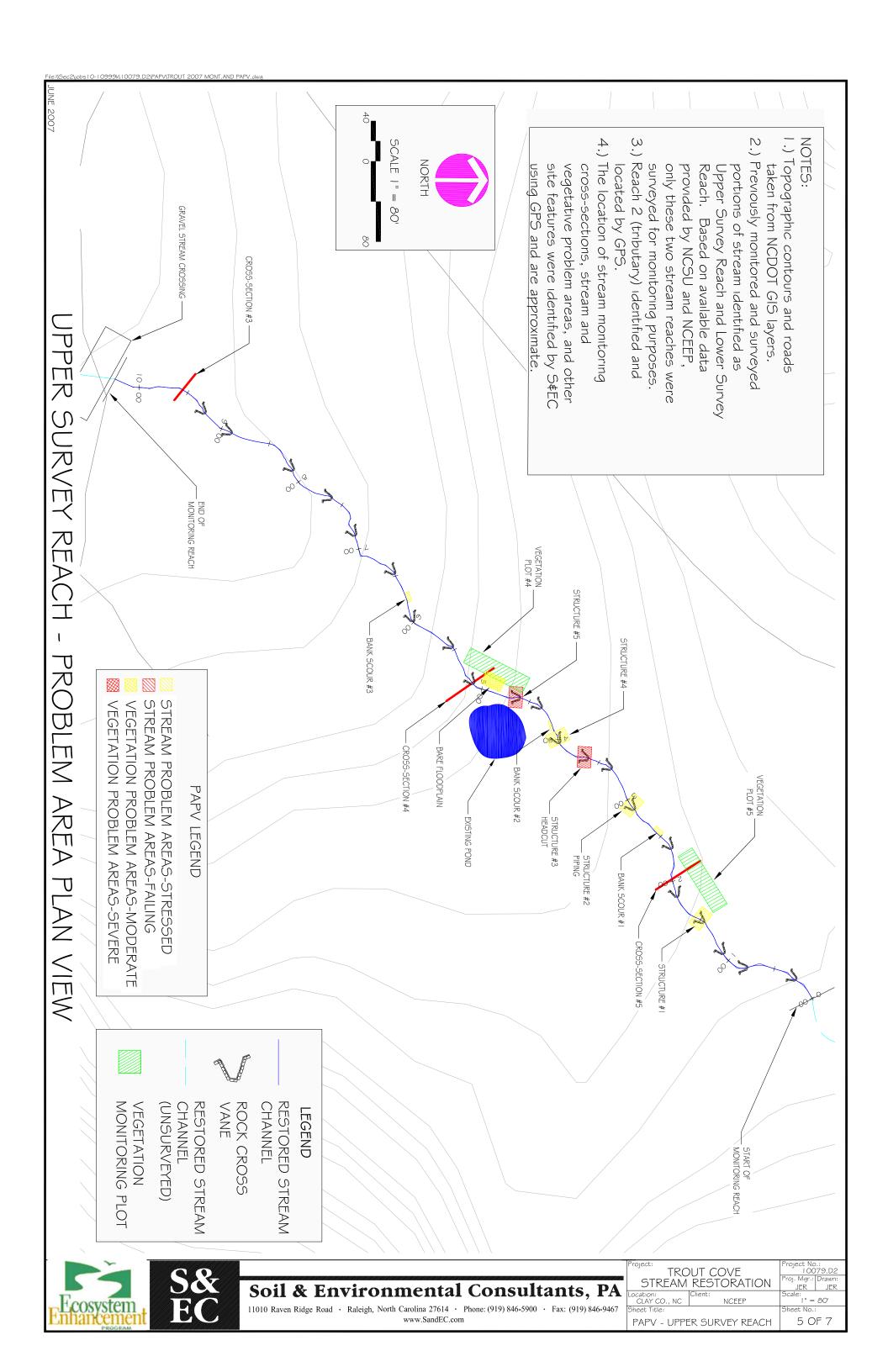

No unavoidable deviations from initially prescribed methodologies were implemented as a part of monitoring Year 2 (2007) activities. Vegetation counts were completed according to CVS-EEP Protocol for Recording Vegetation Version 4.0.

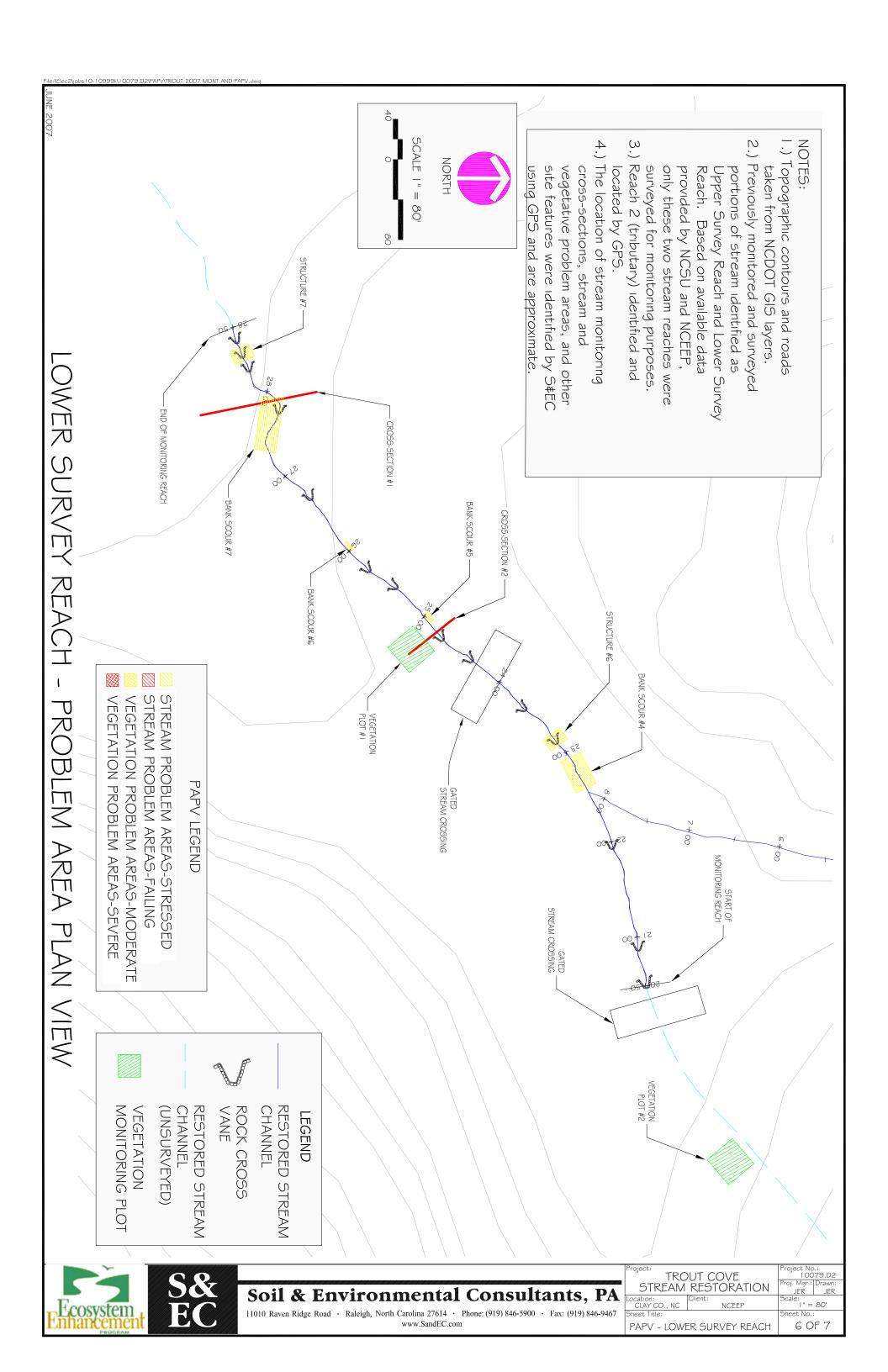

References

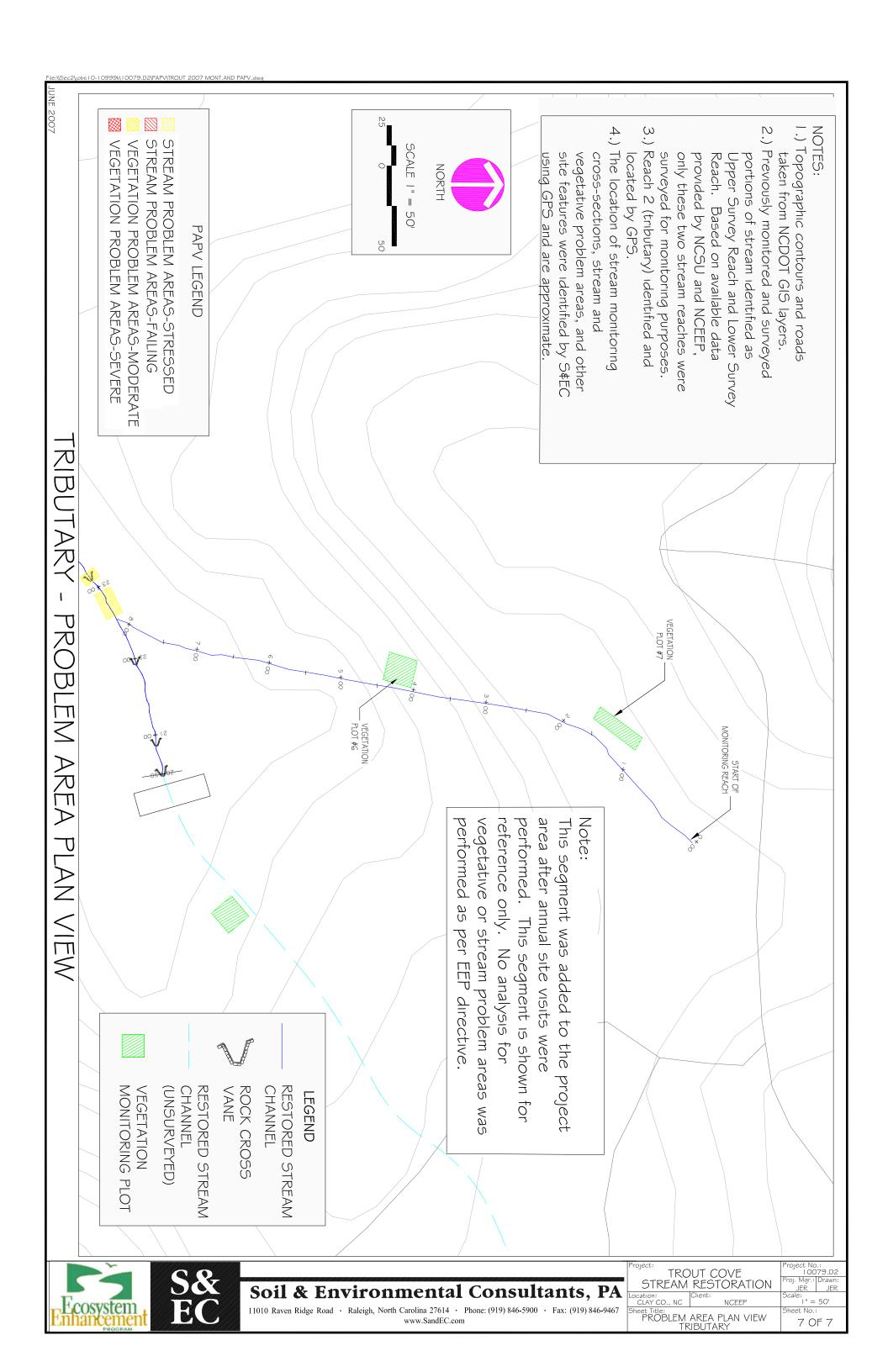

Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2006. CVS-EEP Protocol for Recording Vegetation, Version 4.0 (http://cvs.bio.unc.edu/methods.htm)


Weakley, Alan S. 2004. Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas.









APPENDIX A -

Vegetation Data Survey Tables

Trout Cov	e Stream F Live Ste	em Counts	_		• .)ject# 366)		
	Plot #							
		Rea						
Species	1	2	3	4	5	6	7	Year 2 Totals
<i>Acer rubrum</i> Red Maple		1		1	1			3
Alnus serrulata* Tag Alder	5	3	1	8	13			30
<i>Betula nigra</i> River Birch					1			1
Cephalanthus occidentalis Buttonbush			1	2	2			5
Clethra alnifolia Pepperbush	2			1				3
Cornus amomum* Silky Dogwood	1	6	2	8	10			27
<i>Liriodendron tulipifera</i> Tulip poplar				1	1			2
Platanus occidentalis Sycamore	1	1						2
<i>Salix nigra</i> Black Willow		6		3	1			10
Year 2 (2007) Plot Totals	9	17	4	24	29			83
Year 1 (2006) Plot Totals	6	18	4	22	28	N/A	N/A	78
Previous Plot Totals	5	4	5	22	14	N/A	N/A	50
Plot Live Stem Density	364	689	162	972	1175			

Report Prepared By David Ingersoll

Date Prepared 6/20/2007 14:32

database name2007-TC-CVS_EEP_EntryTool_v210.mdbdatabase location\\Sec2\jobs10-10999k\10079.D2\\Vegetation

DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT-----

Metadata This worksheet, which is a summary of the project and the project data.

Plots List of plots surveyed.

Vigor Frequency distribution of vigor classes.

Vigor by Spp Frequency distribution of vigor classes listed by species.

Damage List of most frequent damage classes with number of occurrences and p

Damage by SppDamage values tallied by type for each species.

Damage values tallied by type for each plot.

Stem Count by Plot and Spp Count of living stems of each species for each plot; dead and missing st

PROJECT SUMMARY-----

Project Code	project Name	Description			
TC	Trout Cove	Trout Cove Branch Stream Restoratio			

Table 2. – Vegetation Vigor by Species

	Species	4	3	2	1	0	Missing
	Acer rubrum	3	2				
	Alnus serrulata	18	10	2			
	Betula nigra	9	1				
	Cephalanthus occidentalis	4	2				
	Clethra alnifolia	2	1				
	Cornus amomum	17	10	1	1		
	Liriodendron tulipifera	1	1				
	Platanus occidentalis	3					
	Salix nigra	9	4		1		
TOT:	9	66	31	3	2	0	0

Table 3. – Vegetation Damage by Species

	Species	All Damage Categorie s	(no damage)	Insect s	(other damage)
	Acer rubrum	5	4	1	
	Alnus serrulata	30	30		
	Betula nigra	10	9	1	
	Cephalanthus occidentalis	6	6		
	Clethra alnifolia	3	2	1	
	Cornus amomum	29	27	2	
	Liriodendron tulipifera	2	2		
	Platanus occidentalis	3	3		
	Salix nigra	14	10	4	
TOT :	9	102	93	9	0

Table 4. – Vegetation Damage by Plot

	plot	All Damage Categories	(no damage)	Insects	(other damage)
	TC-01-buffer1-year:2	9	9		
	TC-01-buffer2-year:2	17	12	5	
	TC-01-buffer3-year:2	4	4		
	TC-01-buffer4-year:2	24	21	3	
	TC-01-buffer5-year:2	29	28	1	
	TC-01-buffer6-year:2	11	11		
	TC-01-buffer7-year:2	8	8		
TOT:	7	102	93	9	

Table 5. – Stem Count by Plot and Species

Species	Total Stems	# plots	avg#	TC-01- buffer1- year:2	TC-01- buffer2- year:2	TC-01- buffer3- year:2	TC-01- buffer4- year:2	TC-01- buffer5- year:2	TC-01- buffer6- year:2	TC-01- buffer7- year:2
Acer rubrum	5	4	1.25		1		1	1	2	
Alnus serrulata	30	5	6	5	3	1	8	13		
Betula nigra	10	3	3.33					1	4	5
Cephalanthus occidentalis	6	4	1.5			1	2	2	1	
Clethra alnifolia	3	2	1.5	2			1			
Cornus amomum	29	6	4.83	1	6	2	8	10	2	
Liriodendron tulipifera	2	2	1				1	1		
Platanus occidentalis	3	2	1.5	1	1					
Salix nigra	14	5	2.8		6		3	1	2	2
9	102			9	17	4	24	29	11	8

APPENDIX A -

Vegetation Monitoring Plot Photos

Vegetation Monitoring Plot #1—Year 2 (June 12, 2007)

Vegetation Monitoring Plot #1—Year 1 (June 20, 2006)

Vegetation Monitoring Plot #2—Year 2 (June 12, 2007)

Vegetation Monitoring Plot #2—Year 1 (June 20, 2006)

Vegetation Monitoring Plot #3—Year 2 (June 12, 2007)

Vegetation Monitoring Plot #3—Year 1 (June 20, 2006)

Vegetation Monitoring Plot #4—Year 2 (June 12, 2007)

Vegetation Monitoring Plot #4—Year 1 (June 20, 2006)

Vegetation Monitoring Plot #5—Year 2 (June 12, 2007)

Vegetation Monitoring Plot #5—Year 1 (June 20, 2006)

Vegetation Monitoring Plot #6—Year 2 (December 12, 2007)

Vegetation Monitoring Plot #7—Year 2 (December 12, 2007)

APPENDIX B -

Stream Problem Areas

Figure I — Typical Rock Shift (June 12, 2007)

Figure 2—Typical Rock Shift (June 12, 2007)

Figure 3—Typical Rock Piping (June 12, 2007)

Figure 4—Typical Bank Scour (November 13, 2007)

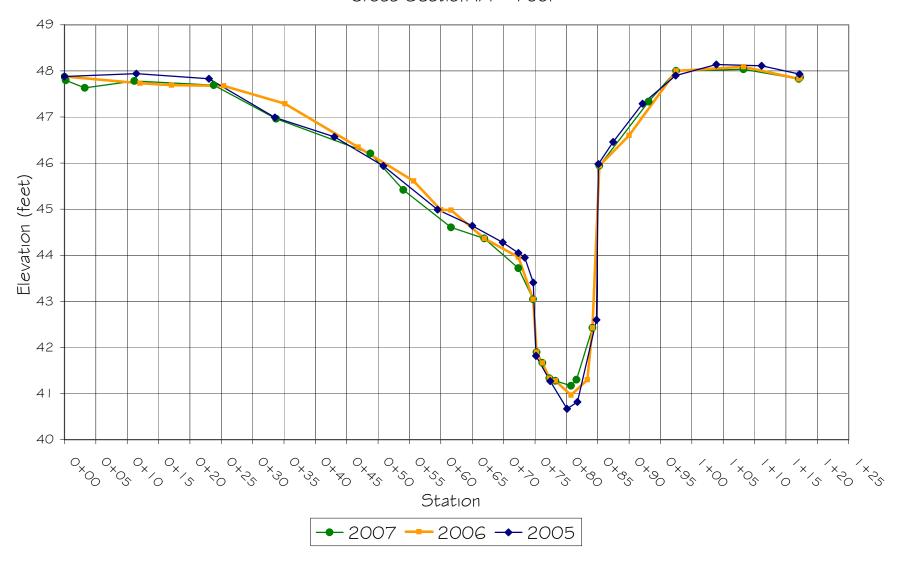
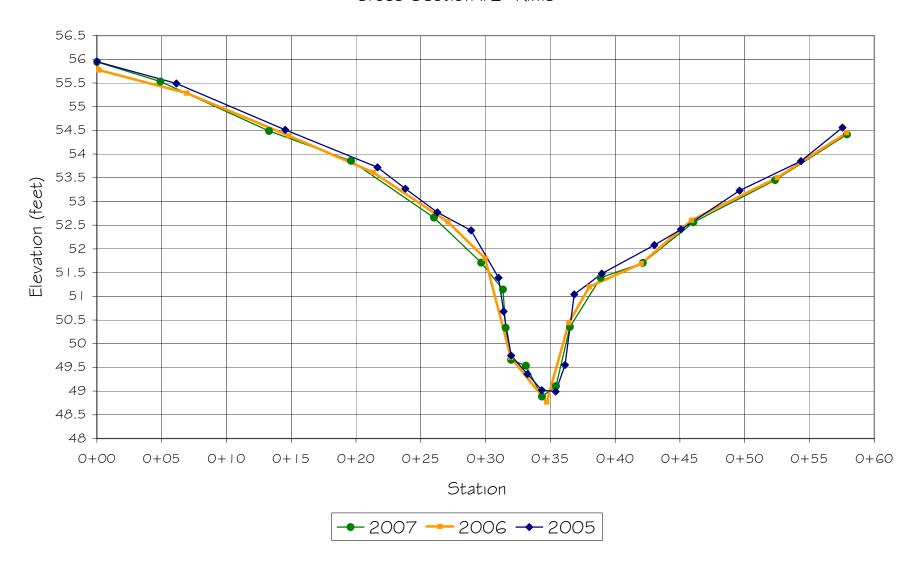
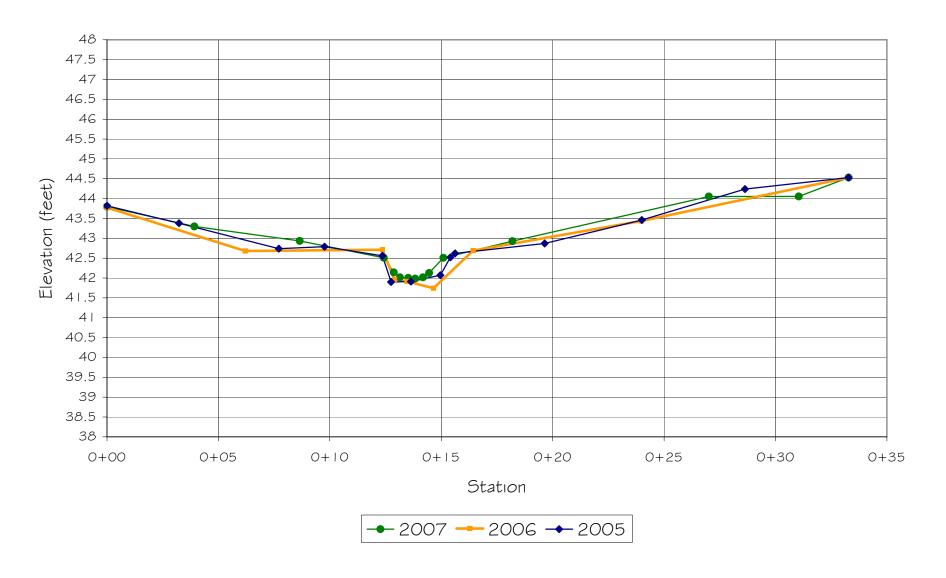
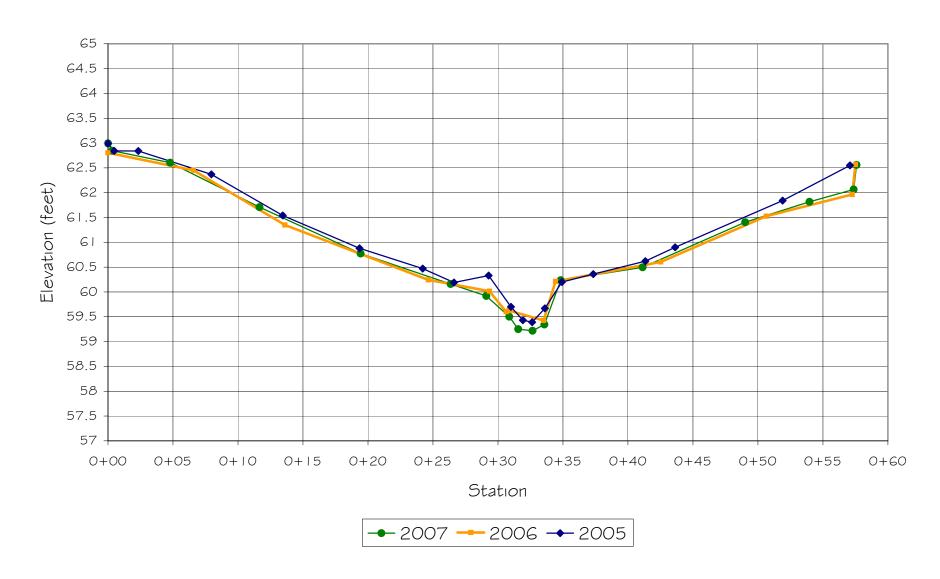


Figure 5—Typical Bank Scour (June 12, 2007)


APPENDIX B -

Cross-section Data


Trout Cove Stream Restoration Cross-Section #1 - Pool


Trout Cove Stream Restoration Cross-Section #2- Riffle

Trout Cove Stream Restoration Cross-Section #3 - Pool

Trout Cove Stream Restoration Cross-Section #4 - Riffle



Trout Cove Stream Restoration Cross-Section #5 - Pool

Cross-section #1—Year 2 (November 13, 2007)

Cross-section #1—Year | (November 17, 2006)

Cross-section #2—Year 2 (November 13, 2007)

Cross-section #2—Year | (November 17, 2006)

Cross-section #3—Year 2 (November 13, 2007)

Cross-section #3—Year I (November 17, 2006)

Cross-section #4—Year 2 (November 13, 2007)

Cross-section #4—Year I (November 17, 2006)

Cross-section #5—Year 2 (November 13, 2007)

Cross-section #5—Year I (November 17, 2006)

River Name: TROUT COVE

Reach Name: 2007 Cross Section Name: XS1 Survey Date: 11/19/2007

		ELEV	NOTE	
0	0	47.872		
0.2	0	47.794		
3.24	0	47.631		
11.15	0	47.78		
23.79	0	47.692		
33.75	0	46.963		
48.77	0	46.211		
54.03	0	45.419		
61.61	0	44.606		
66.93	0	44.365		
72.36	0	43.722		
74.7	0	43.048		
75.26	0	41.898	LEW	
76.18	0	41.665		
77.3	0	41.334		
78.26	0	41.278		
80.75	0	41.17		
81.63	0	41.3		
84.17	0	42.425	REW	
85.28	0	45.941		
93.12	0	47.334		
97.5	0	48		
108.24	0	48.036		
117.08	0	47.828		
117.28	0	47.859		

Cross Sectional Geometry

_____ Channel Left Right Floodprone Elevation (ft) 45.61 45.61 45.61 Bankfull Elevation (ft) 43.39 43.39 43.39 Floodprone Width (ft) 32.41 -----Bankfull Width (ft) 10.96 5.48 5.48 **Entrenchment Ratio** 2.96 Mean Depth (ft) 1.61 1.44 1.78 Maximum Depth (ft) 2.22 2.14 2.22 Width/Depth Ratio 6.81 3.81 3.08 Bankfull Area (sq ft) 17.63 7.87 9.76 Wetted Perimeter (ft) 12.77 8.47 8.58 Hydraulic Radius (ft) 1.38 0.93 1.14 Begin BKF Station 73.51 73.51 78.99 **End BKF Station** 84.47 78.99 84.47

River Name: TROUT COVE Reach Name: 2007

Reach Name: 2007 Cross Section Name: XS2 Survey Date: 11/19/2007

TAPE	FS	ELEV	NOTE	
0	0	55.945		
4.91	0	55.53		
13.28	0	54.487		
19.61	0	53.858		
26.02	0	52.659		
29.66	0	51.709		
31.34	0	51.143		
31.55	0	50.335		
31.97	0	49.659		
33.11	0	49.536		
34.35	0	48.885		
35.43	0	49.105		
36.51	0	50.352		
38.88	0	51.393		
42.14	0	51.704		
46.04	0	52.561		
52.35	0	53.451		
57.89	0	54.414		

Cross Sectional Geometry

·

	Channel	Left	Right
Floodprone Elevation (ft)	53.26	53.26	53.26
Bankfull Elevation (ft)	51.07	51.07	51.07
Floodprone Width (ft)	28.13		
Bankfull Width (ft)	6.79	3.39	3.39
Entrenchment Ratio	4.15		
Mean Depth (ft)	1.29	1.58	1.01
Maximum Depth (ft)	2.19	2.19	2.1
Width/Depth Ratio	5.26	2.15	3.36
Bankfull Area (sq ft)	8.78	5.36	3.42
Wetted Perimeter (ft)	8.64	6.61	6.23
Hydraulic Radius (ft)	1.02	0.81	0.55
Begin BKF Station	31.36	31.36	34.75
End BKF Station	38.14	34.75	38.14

River Name: TROUT COVE Reach Name: 2007

Reach Name: 2007 Cross Section Name: XS3 Survey Date: 11/19/2007

TAPE	FS	ELEV	NOTE	
TALL	1.9		NOIL	
0	0	43.797		
3.92	0	43.3		
8.65	0	42.935		
12.42	0	42.509		
12.87	0	42.142		
13.15	0	42.018		
13.52	0	42.004		
13.83	0	41.985		
14.18	0	42.018		
14.46	0	42.127		
15.1	0	42.51		
18.19	0	42.928		
27.01	0	44.053		
31.04	0	44.054		
33.28	0	44.53		

Cross Sectional Geometry

	Channel	Left	Right
Floodprone Elevation (ft)	44.46	44.46	44.46
Bankfull Elevation (ft)	43.22	43.22	43.22
Floodprone Width (ft)	32.93		
Bankfull Width (ft)	15.52	7.76	7.76
Entrenchment Ratio	2.12		
Mean Depth (ft)	0.46	0.34	0.58
Maximum Depth (ft)	1.23	0.96	1.23
Width/Depth Ratio	33.74	22.82	13.38
Bankfull Area (sq ft)	7.16	2.65	4.51
Wetted Perimeter (ft)	15.89	8.84	8.96
Hydraulic Radius (ft)	0.45	0.3	0.5
Begin BKF Station	4.96	4.96	12.72
End BKF Station	20.48	12.72	20.48

River Name: TROUT COVE Reach Name: 2007

Reach Name: 2007 Cross Section Name: XS4 Survey Date: 11/19/2007

TAPE	FS	ELEV	NOTE	
0	0	62.995		
0.33	0	62.845		
4.78	0	62.604		
11.65	0	61.709		
19.43	0	60.774		
26.36	0	60.159		
29.1	0	59.92		
30.87	0	59.502		
31.56	0	59.25		
32.66	0	59.218		
33.57	0	59.344		
34.83	0	60.236		
41.13	0	60.496		
49.02	0	61.406		
53.97	0	61.816		
57.36	0	62.064		
57.59	0	62.56		

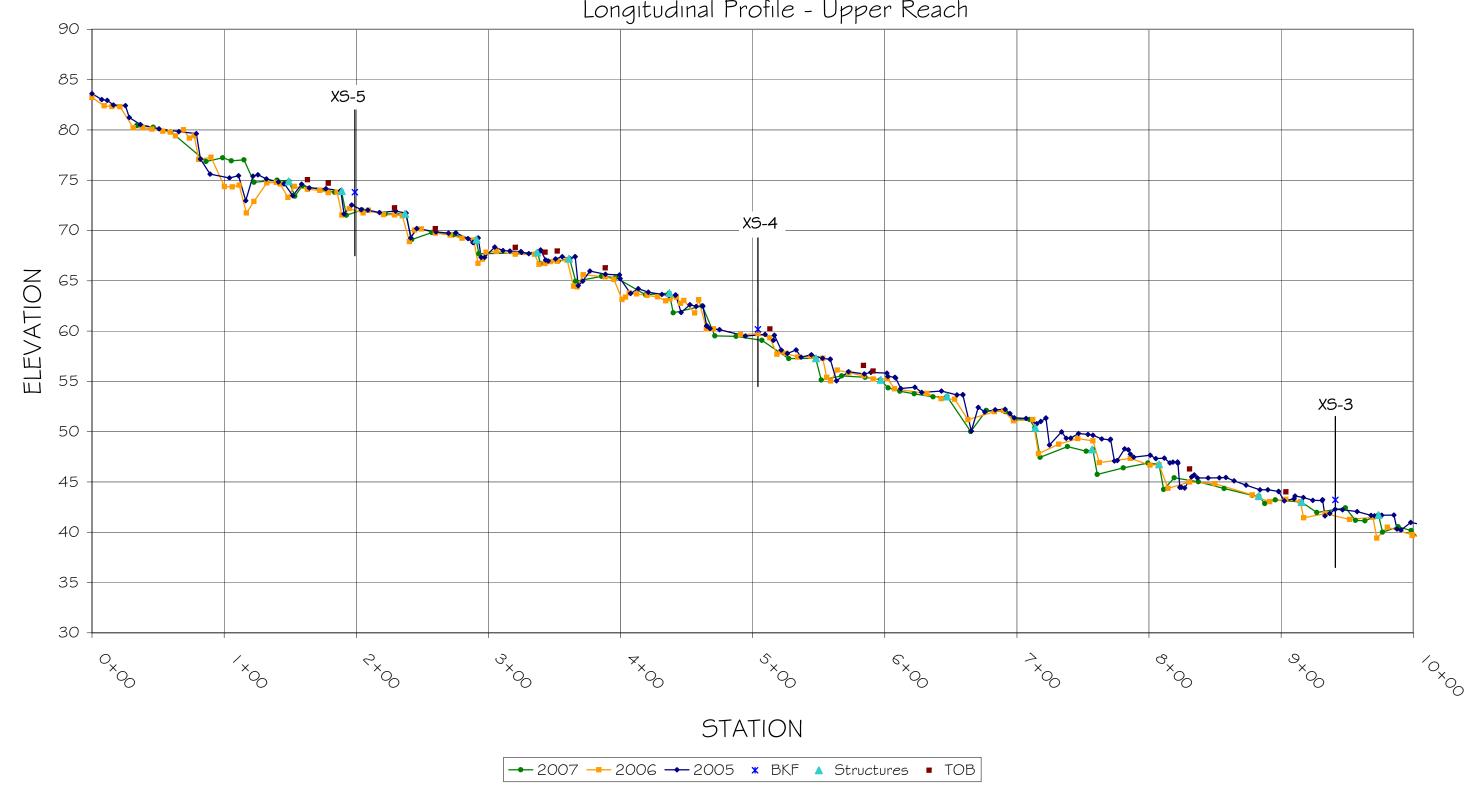
Cross Sectional Geometry

	Channel	Left	Right
Floodprone Elevation (ft)	62.08	62.08	62.08
Bankfull Elevation (ft)	60.65	60.65	60.65
Floodprone Width (ft)	48.58		
Bankfull Width (ft)	21.64	10.82	10.82
Entrenchment Ratio	2.25		
Mean Depth (ft)	0.52	0.53	0.52
Maximum Depth (ft)	1.43	1.4	1.43
Width/Depth Ratio	41.62	20.42	20.81
Bankfull Area (sq ft)	11.35	5.7	5.65
Wetted Perimeter (ft)	22.07	12.35	12.52
Hydraulic Radius (ft)	0.51	0.46	0.45
Begin BKF Station	20.83	20.83	31.65
End BKF Station	42.47	31.65	42.47

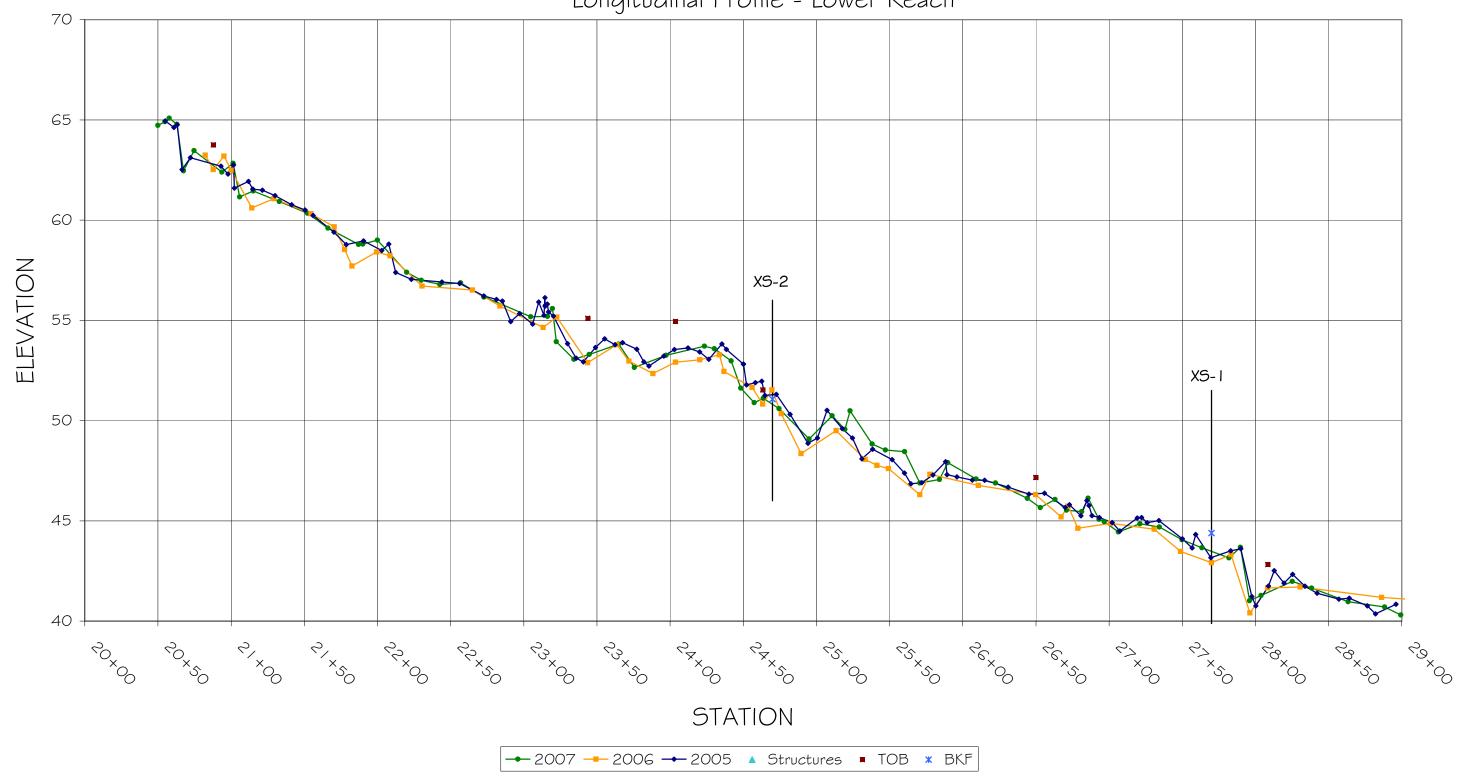
River Name: TROUT COVE

Reach Name: 2007 Cross Section Name: XS5 Survey Date: 11/19/2007

TAPE	FS	ELEV	NOTE	
0	0	75.916		
3.15	0	76.122		
7.13	0	75.872		
10.77	0	75.905		
12.46	0	75.458		
13.12	0	75.149		
13.39	0	74.179		
15	0	73.159		
15.47	0	72.93		
15.96	0	72.255		
16.37	0	72.043		
16.94	0	72.048		
17.28	0	72.003		
17.96	0	72.108		
18.38	0	72.727		
20.78	0	73.134		
25.3	0	73.828		
30.86	0	74.346		
37.72	0	75.189		
45.46	0	75.494		
52	0	75.6		


Cross Sectional Geometry

_____ Channel Left Right Floodprone Elevation (ft) 75.6 75.6 ----Bankfull Elevation (ft) 73.8 73.8 Floodprone Width (ft) 39.88 --------Bankfull Width (ft) 11.13 12.44 -----**Entrenchment Ratio** 3.58 ----Mean Depth (ft) 0.8 0.8 Maximum Depth (ft) 1.8 1.8 Width/Depth Ratio 13.91 15.55 ----Bankfull Area (sq ft) 8.85 8.85 Wetted Perimeter (ft) 12.19 12.19 Hydraulic Radius (ft) 0.73 0.73 ----Begin BKF Station 13.99 13.99 ----**End BKF Station** 25.12 25.12


APPENDIX B -

Longitudinal Profile Data

Trout Cove Stream Restoration Longitudinal Profile - Upper Reach

Trout Cove Stream Restoration Longitudinal Profile - Lower Reach

RIVERMORPH PROFILE SUMMARY

River Name: TROUT COVE Reach Name: 2007 Profile Name: UPPER Survey Date: 11/19/2007

Survey Data

DI ST	СН	WS	BKF	P1	P2	P3	P4
34 46 60 86 99 105 115 123 149 159 159 189 193 204 227 242 257 293 337 339 353 366 386 419 440 462 471 488 507 548 559 567 567 567 567 567 567 667 667	80. 443 80. 272 79. 8 76. 86 77. 931 77. 922 74. 996 74. 894 73. 411 74. 437 73. 923 71. 645 69. 799 69. 799 69. 799 69. 799 69. 809 69. 706 66. 948 67. 809 67. 809 67. 809 67. 809 68. 434 65. 325 67. 248 67. 942 65. 325 67. 268 67. 268 6	80. 843 80. 672 80. 672 80. 12 77. 36 77. 631 77. 422 75. 396 75. 396 74. 837 74. 837 74. 323 72. 045 72. 045					

RIVERMORPH PROFILE SUMMARY

River Name: TROUT COVE Reach Name: 2007 Profile Name: LOWER Survey Date: 11/19/2007

Survey Data

DIST	СН	WS	BKF	P1	P2	P3	P4
3294 3299 3302 3307 3311 3319 3338 3345 3359 3359 3377 3396 3470 3450 3450 3470 3487 3517 3517 3549 3564 3578 3564 3578 3568 3578 3568 3578 3701 3708 3718 3718 3718 3718 3718 3718 3718 371	64. 727 64. 91 65. 78 62. 453 62. 833 62. 833 61. 452 62. 833 61. 452 60. 345 59. 78 58. 8 59. 4 57. 56. 153. 3 53. 814 55. 53. 3 53. 814 55. 53. 3 53. 814 50. 245 51. 626 53. 71 53. 896 53. 814 54. 896 55. 16. 896 56. 179 57. 626 57. 626 57. 627 58. 83 58. 84 59. 628 653. 84 653. 84 653. 84 653. 84 653. 84 653. 84 653. 853. 853. 853. 853. 853. 853. 853. 8						

3888	46. 123	46. 523
3897	45. 655	46. 055
3907	46.063	46. 463
3915	45. 527	45. 927
3925	45. 458	45. 858
3930	46. 133	46. 533
3937	45. 079	45. 479
3941	44. 957	45. 357
3950	44. 443	44.843
3965	44. 853	45. 253
3978	44. 696	45. 096
3994	44. 051	44. 451
4007	43.659	44. 059
4026	43. 153	43. 553
4034	43. 683	44. 083
4040	41. 01	42. 41
4048	41. 278	41. 678
4069	41. 981	42. 381
4082	41. 646	42.046
4107	40. 968	41. 368
4132	40. 7	41. 1
4143	40. 301	41. 301

Cross Section / Bank Profile Locations

Name	Туре	Profile Station
XS1 XS2	Pool XS Riffle XS	4042 3779
XS3	Pool XS	941
XS4	Riffle XS	504
XS5	Pool XS	199

Measurements from Graph

Bankful I Slope: 0.0271

Vari abl e	Mi n	Avg	Max
S riffle	0. 01092 0. 00262	0. 05993 0. 00613	0. 13507 0. 0092
S pool S run	0. 00202	0. 05933	0. 08226
S glide	0. 04953	0.07094	0. 09932
P - P	22. 35	60. 93	121. 32
Pool length	11. 17 2. 62	16. 65 10. 53	20. 75 13. 32
Riffle length Dmax riffle	0. 35	0. 44	0. 49
Dmax pool	0. 88	1. 23	2. 05
Dmax run	0. 26	0. 47	0. 72
Dmax glide	_	0. 55	0. 72
Low bank ht	0	0	0
Length and dep	th measurements	in feet, slo	opes in ft/ft.

RIVERMORPH PROFILE SUMMARY

Notes

River Name: TROUT COVE 2007

Reach Name: Profile Name: LOWER Survey Date: 11/19/2007

DI ST Note

691	51. 994	52. 394
698	51. 273	51. 673
710	51. 2	51. 6
714	50. 373	50. 773
718	47. 447	48. 747
738	48. 514	48. 914
753	48. 062	48. 462
757	48. 225	48. 625
761	45. 75	46. 95
781	46. 405	46. 405
799	46. 872	47. 272
808	46. 744	46. 744
811	44. 252	45. 652
819	45. 412	45. 812
837	45. 022	45. 422
857	44. 345	44. 745
878	43. 671	44. 071
883	43. 607	44. 007
888	42. 848	43. 248
896	43. 225	43. 625
915	43.003	43. 403
927	41. 957	42. 357
949	42. 428	42. 828
956	41. 18	41. 58
963	41. 141	41. 541
974	41. 705	42. 105
977	40. 006	40. 406
989	40. 547	40. 947
998	40. 158	40. 558
1003	39. 609	40.009

Cross Section / Bank Profile Locations

Name	Туре	Profile Station
XS1	Pool XS	4042 2770
XS2	Riffle XS	3779
XS3	Pool XS	941
XS4	Riffle XS	504
XS5	Pool XS	199

Measurements from Graph

Bankful I SI ope: 0. 04099

Vari abl e	Mi n	Avg	Max
S riffle S pool S run S glide P - P Pool length Riffle length Dmax riffle Dmax pool Dmax run Dmax glide Low bank ht	0. 02387 0. 003 0. 01004 0. 02182 29. 94 4. 75 4. 69 0. 39 0. 85 0. 39 0. 28 0	0. 06575 0. 0078 0. 02667 0. 02807 57. 62 11. 98 5. 98 0. 55 1. 39 0. 61 0. 62 0	0. 0966 0. 01096 0. 04226 0. 03096 87. 91 22. 33 7. 98 0. 9 2. 42 0. 79 0. 85 0
Length and dep	th measurements	in feet, slope:	s in ft/ft.

RIVERMORPH PROFILE SUMMARY

River Name: TROUT COVE Reach Name: 2007 Profile Name: UPPER Survey Date: 11/19/2007

DIST Note

Table B1. Qualitative Visual Stability Assessment Date: November, 2007

Project # 10079.D2

Feature Category		(# stable)	Total	Total		Feature
		Number	number	Number /	% perfor.	Perform.
		performing		feet in	in stable	
		as	per As-	unstable	condition	Mean or
	Metric (per As-built and reference baselines	intended	built	state		Total
A. Riffles	1. Present?	64	64	NA	100%	
	2. Armor stable (e.g. no displacement)?	64	64	NA	100%	
	3. Facet grade appears stable?	64	64	NA	100%	
	4. Stable interval grade?	64	64	NA	100%	
	5. Feature spacing appropriate?	59	64	NA	92%	
	6. Minimal evidence of embedding/fining?	64	64	NA	100%	
	7. Depth appears appropriate for current discharge?	64	64	NA	N/A	
	8. Length appropriate?	54	64	NA	N/A	99%
B. Pools	1. Present? (e.g. not subject to severe aggradation?)	59	59	. NA	100%	
2.1 00.0	2. Sufficiently deep (Max Pool D:Mean Bkf>1.6)	59	59	NA	100%	
	3. Thalweg located outer bend?	59	59	NA	100%	
	4. Spacing appropriate?	59	59	NA	N/A	
	5. Non-aggrading (not filling)?	59	59	NA NA	100%	
	6. Length appropriate?	59	59	NA NA	N/A	100%
C. Thalweg	Upstream of meander bend (run/inflection) centering?	59	FO	NA NA	100%	
C. maiweg	Downstream of meander (glide/inflection) centering? 2. Downstream of meander (glide/inflection) centering?	59 59	59 59	NA NA	100%	100%
					100%	100%
D. Meanders	Outer bend in state of limited/controlled erosion?	59	59	NA	100%	
	2. Of those eroding, # w/ concomitant point bar formation?	0	59	NA	0%	
	3. Apparent Rc within spec?	N/A	N/A	NA	N/A	
	4. Sufficient floodplain access and relief?	59	59	NA	100%	100%
E. Bed General	1. General channel bed aggradation areas (bar formation)	NA	NA	0	100%	
	Channel bed degradation - areas of increasing down	NA	NA	75	96%	98%
	cutting or head cutting?	INA	INA	75	96%	96%
F. Channel						
Capac./Dimen	Channel width: depth appears out of design/type spec?	NA	NA	N/A	N/A	N/A
•	1 11 0 21					
G. Banks	Apparent scour points from channel processes	NA	NA	0	100%	
	Apparent cut points from overland flow	NA	NA	50	99%	
	Apparent cut or scour from flood water re-entry to channel (e.g. inadequate floodplain access?)	NA	NA	0	100%	
	4. Tension cracks	NA	NA	0	100%	
	5. Bank gradient in excess of 40%?	NA	NA	200	95%	
	6. Collapse/slumping	NA	NA	124	97%	
	7. Ratio of bank height: bankfull height elevated	NA	NA	N/A	100%	98.6%
H. Vanes	1. Free of back or arm scour?	53	56	NA	95%	
	2. Height appropriate?	51	56	NA	91%	
	3. Angle and geometry appear appropriate?	53	56	NA	95%	
	4. Free of piping or other structural failures?	55	56	NA	98%	95%
L Mada/Daylatan						
I. Wads/Boulders	1. Free of scour? 2. Footing stable?	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	z. roomy stable?	IN/A	IN/A	IN/A	IN/A	IN/A

Notes: